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Abstract

Super resolving a low-resolution video is usually handled by either single-image
super-resolution (SR) or multi-frame SR. Single-Image SR deals with each video
frame independently, and ignores intrinsic temporal dependency of video frames
which actually plays a very important role in video super-resolution. Multi-Frame
SR generally extracts motion information, e.g., optical flow, to model the temporal
dependency, which often shows high computational cost. Considering that recur-
rent neural networks (RNNs) can model long-term contextual information of tem-
poral sequences well, we propose a bidirectional recurrent convolutional network
for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used
recurrent full connections are replaced with weight-sharing convolutional con-
nections and 2) conditional convolutional connections from previous input layers
to the current hidden layer are added for enhancing visual-temporal dependency
modelling. With the powerful temporal dependency modelling, our model can
super resolve videos with complex motions and achieve state-of-the-art perfor-
mance. Due to the cheap convolution operations, our model has a low compu-
tational complexity and runs orders of magnitude faster than other multi-frame
methods.

1 Introduction

Since large numbers of high-definition displays have sprung up, generating high-resolution videos
from previous low-resolution contents, namely video super-resolution (SR), is under great demand.
Recently, various methods have been proposed to handle this problem, which can be classified into
two categories: 1) single-image SR [10, 5, 9, 8, 12, 25, 23] super resolves each of the video frames
independently, and 2) multi-frame SR [13, 17, 3, 2, 14, 13] models and exploits temporal dependency
among video frames, which is usually considered as an essential component of video SR.

Existing multi-frame SR methods generally model the temporal dependency by extracting subpixel
motions of video frames, e.g., estimating optical flow based on sparse prior integration or variation
regularity [2, 14, 13]. But such accurate motion estimation can only be effective for video sequences
which contain small motions. In addition, the high computational cost of these methods limits the
real-world applications. Several solutions have been explored to overcome these issues by avoiding
the explicit motion estimation [21, 16]. Unfortunately, they still have to perform implicit motion
estimation to reduce temporal aliasing and achieve resolution enhancement when large motions are
encountered.

Given the fact that recurrent neural networks (RNNs) can well model long-term contextual infor-
mation for video sequence, we propose a bidirectional recurrent convolutional network (BRCN)
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to efficiently learn the temporal dependency for multi-frame SR. The proposed network exploits
three convolutions. 1) Feedforward convolution models visual spatial dependency between a low-
resolution frame and its high-resolution result. 2) Recurrent convolution connects the hidden layers
of successive frames to learn temporal dependency. Different from the commonly-used full recurrent
connection in vanilla RNNs, it is a weight-sharing convolutional connection here. 3) Conditional
convolution connects input layers at the previous timestep to the current hidden layer, to further en-
hance visual-temporal dependency modelling. To simultaneously consider the temporal dependency
from both previous and future frames, we exploit a forward recurrent network and a backward re-
current network, respectively, and then combine them together for the final prediction. We apply the
proposed model to super resolve videos with complex motions. The experimental results demon-
strate that the model can achieve state-of-the-art performance, as well as orders of magnitude faster
speed than other multi-frame SR methods.

Our main contributions can be summarized as follows. We propose a bidirectional recurrent con-
volutional network for multi-frame SR, where the temporal dependency can be efficiently modelled
by bidirectional recurrent and conditional convolutions. It is an end-to-end framework which does
not need pre-/post-processing. We achieve better performance and faster speed than existing multi-
frame SR methods.

2 Related Work

We will review the related work from the following prospectives.

Single-Image SR. Irani and Peleg [10] propose the primary work for this problem, followed by
Freeman et al. [8] studying this problem in a learning-based way. To alleviate high computational
complexity, Bevilacqua et al. [4] and Chang et al. [5] introduce manifold learning techniques which
can reduce the required number of image patch exemplars. For further acceleration, Timofte et al.
[23] propose the anchored neighborhood regression method. Yang et al. [25] and Zeyde et al. [26]
exploit compressive sensing to encode image patches with a compact dictionary and obtain sparse
representations. Dong et al. [6] learn a convolutional neural network for single-image SR which
achieves the current state-of-the-art result. In this work, we focus on multi-frame SR by modelling
temporal dependency in video sequences.

Multi-Frame SR. Baker and Kanade [2] extract optical flow to model the temporal dependency in
video sequences for video SR. Then, various improvements [14, 13] around this work are explored
to better handle visual motions. However, these methods suffer from the high computational cost
due to the motion estimation. To deal with this problem, Protter et al. [16] and Takeda et al. [21]
avoid motion estimation by employing nonlocal mean and 3D steering kernel regression. In this
work, we propose bidirectional recurrent and conditional convolutions as an alternative to model
temporal dependency and achieve faster speed.

3 Bidirectional Recurrent Convolutional Network

3.1 Formulation

Given a low-resolution, noisy and blurry video, our goal is to obtain a high-resolution, noise-free
and blur-free version. In this paper, we propose a bidirectional recurrent convolutional network (BR-
CN) to map the low-resolution frames to high-resolution ones. As shown in Figure 1, the proposed
network contains a forward recurrent convolutional sub-network and a backward recurrent convolu-
tional sub-network to model the temporal dependency from both previous and future frames. Note
that similar bidirectional scheme has been proposed previously in [18]. The two sub-networks of
BRCN are denoted by two black blocks with dash borders, respectively. In each sub-network, there
are four layers including the input layer, the first hidden layer, the second hidden layer and the output
layer, which are connected by three convolutional operations:

1. Feedforward Convolution. The multi-layer convolutions denoted by black lines learn
visual spatial dependency between a low-resolution frame and its high-resolution result.
Similar configurations have also been explored previously in [11, 7, 6].
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Figure 1: The proposed bidirectional recurrent convolutional network (BRCN).

2. Recurrent Convolution. The convolutions denoted by blue lines aim to model long-term
temporal dependency across video frames by connecting adjacent hidden layers of suc-
cessive frames, where the current hidden layer is conditioned on the hidden layer at the
previous timestep. We use the recurrent convolution in both forward and backward sub-
networks. Such bidirectional recurrent scheme can make full use of the forward and back-
ward temporal dynamics.

3. Conditional Convolution. The convolutions denoted by red lines connect input layer at
the previous timestep to the current hidden layer, and use previous inputs to provide long-
term contextual information. They enhance visual-temporal dependency modelling with
this kind of conditional connection.

We denote the frame sets of a low-resolution video1 X as {Xi}i=1,2,...,T , and infer the other three
layers as follows.

First Hidden Layer. When inferring the first hidden layer Hf
1 (Xi) (or Hb

1(Xi)) at the ith timestep
in the forward (or backward) sub-network, three inputs are considered: 1) the current input layer
Xi connected by a feedforward convolution, 2) the hidden layer Hf

1 (Xi−1) (or Hb
1(Xi+1)) at the

i−1th (or i+1th) timestep connected by a recurrent convolution, and 3) the input layer Xi−1 (or
Xi+1) at the i−1th (or i+1th) timestep connected by a conditional convolution.

Hf
1 (Xi) = λ(Wf

v1 ∗Xi + Wf
r1 ∗H

f
1 (Xi−1) + Wf

t1 ∗Xi−1 + Bf
1 )

Hb
1(Xi) = λ(Wb

v1 ∗Xi + Wb
r1 ∗H

b
1(Xi+1) + Wb

t1 ∗Xi+1 + Bb
1)

(1)

where Wf
v1 (or Wb

v1 ) and Wf
t1 (or Wb

t1 ) represent the filters of feedforward and conditional con-
volutions in the forward (or backward) sub-network, respectively. Both of them have the size of
c×fv1×fv1×n1, where c is the number of input channels, fv1 is the filter size and n1 is the number
of filters. Wf

r1 (or Wb
r1 ) represents the filters of recurrent convolutions. Their filter size fr1 is set to

1 to avoid border effects. Bf
1 (or Bb

1) represents biases. The activation function is the rectified linear
unit (ReLu): λ(x)=max(0, x) [15]. Note that in Equation 1, the filter responses of recurrent and

1Note that we upscale each low-resolution frame in the sequence to the desired size with bicubic interpola-
tion in advance.

3



1B

1A

1C
0C

iX1iX

1iH iH

1iX
iX

1 1( )f

iH X 1 ( )f

iH X

-dimensional 

vector

(a) TRBM (b) BRCN

Figure 2: Comparison between TRBM and the proposed BRCN.

conditional convolutions can be regarded as dynamic changing biases, which focus on modelling
the temporal changes across frames, while the filter responses of feedforward convolution focus on
learning visual content.

Second Hidden Layer. This phase projects the obtained feature maps Hf
1 (Xi) (or Hb

1(Xi)) from
n1 to n2 dimensions, which aims to capture the nonlinear structure in sequence data. In addition to
intra-frame mapping by feedforward convolution, we also consider two inter-frame mappings using
recurrent and conditional convolutions, respectively. The projected n2-dimensional feature maps in
the second hidden layer Hf

2 (Xi) (or (Hb
2(Xi)) in the forward (or backward) sub-network can be

obtained as follows:

Hf
2 (Xi) = λ(Wf

v2 ∗H
f
1 (Xi) + Wf

r2 ∗H
f
2 (Xi−1) + Wf

t2 ∗H
f
1 (Xi−1) + Bf

2 )

Hb
2(Xi) = λ(Wb

v2 ∗H
b
1(Xi) + Wb

r2 ∗H
b
2(Xi+1) + Wb

t2 ∗H
b
1(Xi+1) + Bb

2)
(2)

where Wf
v2 (or Wb

v2 ) and Wf
t2 (or Wb

t2 ) represent the filters of feedforward and conditional con-
volutions, respectively, both of which have the size of n1×1×1×n2. Wf

r2 (or Wb
r2 ) represents the

filters of recurrent convolution, whose size is n2×1×1×n2.

Note that the inference of the two hidden layers can be regarded as a representation learning phase,
where we could stack more hidden layers to increase the representability of our network to better
capture the complex data structure.

Output Layer. In this phase, we combine the projected n2-dimensional feature maps in both for-
ward and backward sub-networks to jointly predict the desired high-resolution frame:

O(Xi) =Wf
v3 ∗H

f
2 (Xi) + Wf

t3 ∗H
f
2 (Xi−1) + Bf

3 + Wb
v3 ∗H

b
2(Xi) + Wb

t3 ∗H
b
2(Xi+1) + Bb

3
(3)

where Wf
v3 (or Wb

v3 ) and Wf
t3 (or Wb

t3 ) represent the filters of feedforward and conditional convo-
lutions, respectively. Their sizes are both n2×fv3×fv3

×c. We do not use any recurrent convolution
for output layer.

3.2 Connection with Temporal Restricted Boltzmann Machine

In this section, we discuss the connection between the proposed BRCN and temporal restricted
boltzmann machine (TRBM) [20] which is a widely used model in sequence modelling.

As shown in Figure 2, TRBM and BRCN contain similar recurrent connections (blue lines) between
hidden layers, and conditional connections (red lines) between input layer and hidden layer. They
share the common flexibility to model and propagate temporal dependency along the time. How-
ever, TRBM is a generative model while BRCN is a discriminative model, and TRBM contains an
additional connection (green line) between input layers for sample generation.

In fact, BRCN can be regarded as a deterministic, bidirectional and patch-based implementation of
TRBM. Specifically, when inferring the hidden layer in BRCN, as illustrated in Figure 2 (b), feed-
forward and conditional convolutions extract overlapped patches from the input, each of which is
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fully connected to a n1-dimensional vector in the feature maps Hf
1 (Xi). For recurrent convolution-

s, since each filter size is 1 and all the filters contain n1×n1 weights, a n1-dimensional vector in
Hf

1 (Xi) is fully connected to the corresponding n1-dimensional vector in Hf
1 (Xi−1) at the previ-

ous time step. Therefore, the patch connections of BRCN are actually those of a “discriminative”
TRBM. In other words, by setting the filter sizes of feedforward and conditional convolutions as the
size of the whole frame, BRCN is equivalent to TRBM.

Compared with TRBM, BRCN has the following advantages for handling the task of video super-
resolution. 1) BRCN restricts the receptive field of original full connection to a patch rather than the
whole frame, which can capture the temporal change of visual details. 2) BRCN replaces all the full
connections with weight-sharing convolutional ones, which largely reduces the computational cost.
3) BRCN is more flexible to handle videos of different sizes, once it is trained on a fixed-size video
dataset. Similar to TRBM, the proposed model can be generalized to other sequence modelling
applications, e.g., video motion modelling [22].

3.3 Network Learning

Through combining Equations 1, 2 and 3, we can obtain the desired prediction O(X ; Θ) from the
low-resolution video X , where Θ denotes the network parameters. Network learning proceeds by
minimizing the Mean Square Error (MSE) between the predicted high-resolution video O(X ; Θ)
and the groundtruth Y:

L = ‖O(X ; Θ)− Y‖2 (4)

via stochastic gradient descent. Actually, stochastic gradient descent is enough to achieve satisfying
results, although we could exploit other optimization algorithms with more computational cost, e.g.,
L-BFGS. During optimization, all the filter weights of recurrent and conditional convolutions are
initialized by randomly sampling from a Gaussian distribution with mean 0 and standard deviation
0.001, whereas the filter weights of feedforward convolution are pre-trained on static images [6].
Note that the pretraining step only aims to speed up training by providing a better parameter ini-
tialization, due to the limited size of training set. This step can be avoided by alternatively using a
larger scale dataset. We experimentally find that using a smaller learning rate (e.g., 1e−4) for the
weights in the output layer is crucial to obtain good performance.

4 Experimental Results

To verify the effectiveness, we apply the proposed model to the task of video SR, and present both
quantitative and qualitative results as follows.

4.1 Datasets and Implementation Details

We use 25 YUV format video sequences2 as our training set, which have been widely used in many
video SR methods [13, 16, 21]. To enlarge the training set, model training is performed in a volume-
based way, i.e., cropping multiple overlapped volumes from training videos and then regarding each
volume as a training sample. During cropping, each volume has a spatial size of 32×32 and a
temporal step of 10. The spatial and temporal strides are 14 and 8, respectively. As a result, we
can generate roughly 41,000 volumes from the original dataset. We test our model on a variety
of challenging videos, including Dancing, Flag, Fan, Treadmill and Turbine [19], which contain
complex motions with severe motion blur and aliasing. Note that we do not have to extract volumes
during testing, since the convolutional operation can scale to videos of any spatial size and temporal
step. We generate the testing dataset with the following steps: 1) using Gaussian filter with standard
deviation 2 to smooth each original frame, and 2) downsampling the frame by a factor of 4 with
bicubic method3.

2http://www.codersvoice.com/a/webbase/video/08/152014/130.html.
3Here we focus on the factor of 4, which is usually considered as the most difficult case in super-resolution.
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Table 1: The results of PSNR (dB) and running time (sec) on the testing video sequences.

Video Bicubic SC [25] K-SVD [26] NE+NNLS [4] ANR [23]
PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Dancing 26.83 - 26.80 45.47 27.69 2.35 27.63 19.89 27.67 0.85
Flag 26.35 - 26.28 12.89 27.61 0.58 27.41 4.54 27.52 0.20
Fan 31.94 - 32.50 12.92 33.55 1.06 33.45 8.27 33.49 0.38
Treadmill 21.15 - 21.27 15.47 22.22 0.35 22.08 2.60 22.24 0.12
Turbine 25.09 - 25.77 16.49 27.00 0.51 26.88 3.67 27.04 0.18
Average 26.27 - 26.52 20.64 27.61 0.97 27.49 7.79 27.59 0.35

Video NE+LLE [5] SR-CNN [6] 3DSKR [21] Enhancer [1] BRCN
PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Dancing 27.64 4.20 27.81 1.41 27.81 1211 27.06 - 28.09 3.44
Flag 27.48 0.96 28.04 0.36 26.89 255 26.58 - 28.55 0.78
Fan 33.46 1.76 33.61 0.60 31.91 323 32.14 - 33.73 1.46
Treadmill 22.22 0.57 22.42 0.15 22.32 127 21.20 - 22.63 0.46
Turbine 26.98 0.80 27.50 0.23 24.27 173 25.60 - 27.71 0.70
Average 27.52 1.66 27.87 0.55 26.64 418 26.52 - 28.15 1.36

Table 2: The results of PSNR (dB) by variants of BRCN on the testing video sequences. v: feedfor-
ward convolution, r: recurrent convolution, t: conditional convolution, b: bidirectional scheme.

Video BRCN BRCN BRCN BRCN BRCN
{v} {v, r} {v, t} {v, r, t} {v, r, t, b}

Dancing 27.81 27.98 27.99 28.09 28.09
Flag 28.04 28.32 28.39 28.47 28.55
Fan 33.61 33.63 33.65 33.65 33.73
Treadmill 22.42 22.59 22.56 22.59 22.63
Turbine 27.50 27.47 27.50 27.62 27.71
Average 27.87 27.99 28.02 28.09 28.15

Some important parameters of our network are illustrated as follows: fv1=9, fv3=5, n1=64, n2=32
and c=14. Note that varying the number and size of filters does not have a significant impact on the
performance, because some filters with certain sizes are already in a regime where they can almost
reconstruct the high-resolution videos [24, 6].

4.2 Quantitative and Qualitative Comparison

We compare our BRCN with two multi-frame SR methods including 3DSKR [21] and a commercial
software namely Enhancer [1], and seven single-image SR methods including Bicubic, SC [25], K-
SVD [26], NE+NNLS [4], ANR [23], NE+LLE [5] and SR-CNN [6].

The results of all the methods are compared in Table 1, where evaluation measures include both peak
signal-to-noise ratio (PSNR) and running time (Time). Specifically, compared with the state-of-the-
art single-image SR methods (e.g., SR-CNN, ANR and K-SVD), our multi-frame-based method can
surpass them by 0.28∼0.54 dB, which is mainly attributed to the beneficial mechanism of temporal
dependency modelling. BRCN also performs much better than the two representative multi-frame
SR methods (3DSKR and Enhancer) by 1.51 dB and 1.63 dB, respectively. In fact, most existing
multi-frame-based methods tend to fail catastrophically when dealing with very complex motions,
because it is difficult for them to estimate the motions with pinpoint accuracy.

For the proposed BRCN, we also investigate the impact of model architecture on the performance.
We take a simplified network containing only feedforward convolution as a benchmark, and then
study its several variants by successively adding other operations including bidirectional scheme,
recurrent and conditional convolutions. The results by all the variants of BRCN are shown in Table
2, where the elements in the brace represent the included operations. As we can see, due to the ben-

4Similar to [23], we only deal with luminance channel in the YCrCb color space. Note that our model can
be generalized to handle all the three channels by setting c=3. Here we simply upscale the other two channels
with bicubic method for well illustration.
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(a) Original (b) Bicubic (c) ANR [23] (d) SR-CNN [6] (e) BRCN

Figure 3: Closeup comparison among original frames and super resolved results by Bicubic, ANR,
SR-CNN and BRCN, respectively.

efit of learning temporal dependency, exploiting either recurrent convolution {v, r} or conditional
convolution {v, t} can greatly improve the performance. When combining these two convolutions
together {v, r, t}, they obtain much better results. The performance can still be further promoted
when adding the bidirectional scheme {v, r, t, b}, which results from the fact that each video frame
is related to not only its previous frame but also the future one.

In addition to the quantitative evaluation, we also present some qualitative results in terms of single-
frame (in Figure 3) and multi-frame (in Figure 5). Please enlarge and view these figures on the
screen for better comparison. From these figures, we can observe that our method is able to recover
more image details than others under various motion conditions.

4.3 Running Time

BRCN 

3DSKR 

SR-CNN 

SC 

NE+LLE 
ANR K-SVD 

NE+NNLS 

: multi-frame SR method : single-image SR method 

Figure 4: Running time vs. PSNR for all the methods.

We present the comparison of running
time in both Table 1 and Figure 4, where
all the methods are implemented on the
same machine (Intel CPU 3.10 GHz and
32 GB memory). The publicly avail-
able codes of compared methods are al-
l in MATLAB while SR-CNN and ours
are in Python. From the table and fig-
ure, we can see that our BRCN takes
1.36 sec per frame on average, which
is orders of magnitude faster than the
fast multi-frame SR method 3DSKR.
It should be noted that the speed gap
is not caused by the different MAT-
LAB/Python implementations. As stat-
ed in [13, 21], the computational bottle-
neck for existing multi-frame SR meth-
ods is the accurate motion estimation,
while our model explores an alternative
based on efficient spatial-temporal con-
volutions which has lower computational complexity. Note that the speed of our method is worse
than the fastest single-image SR method ANR. It is likely that our method involves the additional
phase of temporal dependency modelling but we achieve better performance (28.15 vs. 27.59 dB).
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(a) Original (b) Bicubic (c) ANR [23] (d) SR-CNN [6] (e) BRCN

Figure 5: Comparison among original frames (2th, 3th and 4th frames, from the top row to the
bottom) of the Dancing video and super resolved results by Bicubic, ANR, SR-CNN and BRCN,
respectively.

4.4 Filter Visualization

(a) Wf
v1 (b) Wf

t1 (c) Wf
v3 (d) Wf

t3

Figure 6: Visualization of learned filters by the proposed BRCN.

We visualize the learned filters of feedforward and conditional convolutions in Figure 6. The filters
of Wf

v1 and Wf
t1 exhibit some strip-like patterns, which can be viewed as edge detectors. The filters

of Wf
v3 and Wf

t3 show some centrally-averaging patterns, which indicate that the predicted high-
resolution frame is obtained by averaging over the feature maps in the second hidden layer. This
averaging operation is also in consistent with the corresponding reconstruction phase in patch-based
SR methods (e.g., [25]), but the difference is that our filters are automatically learned rather than
pre-defined. When comparing the learned filters between feedforward and conditional convolutions,
we can also observe that the patterns in the filters of feedforward convolution are much more regular
and clear.

5 Conclusion and Future Work

In this paper, we have proposed the bidirectional recurrent convolutional network (BRCN) for multi-
frame SR. Our main contribution is the novel use of bidirectional scheme, recurrent and conditional
convolutions for temporal dependency modelling. We have applied our model to super resolve
videos containing complex motions, and achieved better performance and faster speed. In the future,
we will perform comparisons with other multi-frame SR methods.
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